If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-14x-95=0
a = 14; b = -14; c = -95;
Δ = b2-4ac
Δ = -142-4·14·(-95)
Δ = 5516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5516}=\sqrt{4*1379}=\sqrt{4}*\sqrt{1379}=2\sqrt{1379}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{1379}}{2*14}=\frac{14-2\sqrt{1379}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{1379}}{2*14}=\frac{14+2\sqrt{1379}}{28} $
| 3(2x+5)+8=-31 | | 2•(3x+2)=6x+5 | | 3b^2+11b-5=0 | | -42=2(2x+2)-10 | | n/4+5=(51/2)n | | 3y+24=5y | | 17.5+7x=10 | | 4a+25-11a-19=23 | | n/4+5=(51/2)(n) | | 3(3x+2)=5x-26 | | 2x÷15=11÷75 | | 4(3b-1)=9-5 | | -2(3y+-6)=6 | | (17x-9)=(5x+51) | | 4a+25-9a-16=21 | | 30=1p+37 | | 4h+6=8h-14 | | t-(-5)=7 | | 12x+12=3x-31 | | 12d+18=4+5d | | (12x+14)=(3x+41) | | 16=j/14 | | x^2+5x3=0 | | 7x+3=9x-3-3x | | (3x+50)=(5x−20) | | x^2−4=0 | | x/3+1=13 | | 3=z+129 | | 180=12x+2 | | Y=2.8x | | 9x+2=-7+10x | | -7x-1=-10-8x |